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Abstract—The equations governing a packed bed reactor with radial temperature and concentration
gradients are solved using the orthogonal collocation method. The method is shown to be faster and
more accurate than finite difference calculations. Using the orthogonal collocation method it is
straightforward to extend one-dimensional (lumped parameter) models to the two-dimensional models
needed when radial temperature and concentration gradients are important.

The two-dimensional model is necessary for large Biot numbers, h,.R/k,. where h,. is the wall heat
transfer coefficient, R is the tube radius, and &, is the effective thermal conductivity. For Biot numbers
less than one, seventy-five per cent of the resistance to heat transfer is at the wall, and a one-dimen-
sional (lumped parameter) treatment gives good results.

Computations are illustrated for both plug flow and radially-varying velocity. In the latter case
the velocity profile induces effective thermal conductivity and diffusivity profiles. Calculations made
using the velocity profile predict a heat transfer coefficient which is used in the plug flow model. Good

agreement is obtained between the models.

I. INTRODUCTION
ConsiDErR flow through a cylindrical tube,
packed with catalyst. At a given location along
the length of the tube the velocity is a function of
radius. This induces a radial variation in the
effective thermal conductivity and diffusivity
which model the dispersion in the radial direc-
tion. At the wall the void fraction approaches
one, the velocity changes drastically and the
resistance to heat transfer is altered. This in-
creased resistance can be modeled by either a
lower effective thermal conductivity at the wall
or a heat transfer coefficient. In the simpler,
plug flow model the velocity, effective thermal
conductivity, and diffusivity are constant in the
radial direction, and there is assumed a heat
transfer coefficient at the wall. These two models
are compared below. They lead to partial
differential equations, in radius and length, and
are called distributed parameter models. A
simplication is often made when radial dispersion
is very rapid. Then the temperature and concen-
tration do not depend on radius and the equations
simplify to ordinary differential equations to be
integrated along the length of the reactor. The
resistance to heat transfer is lumped at the wall,
through a heat transfer coefficient, hence the

name lumped parameter model. An important
consideration, treated below, concerns the
question: when is the lumped parameter model
adequate?

In the above models the governing differential
equations are written in terms of a locally-
averaged temperature and concentration, which
are assumed to be the same in the fluid and
catalyst. In heterogenous models the tempera-
ture and concentration of the fluid may differ
from those in the catalyst owing to heat and mass
transfer resistances at the catalyst surface or
diffusional resistance inside the catalyst. Such
complications increase the computation time
needed to solve the resulting equations and make
particularly welcome efficient computational
tools.

The orthogonal collocation method is presen-
ted here as a simple numerical method which is
easy to program for the computer and converges
rapidly. The basic method was developed by
Villadsen and Stewart[44] and has been applied
to nonlinear chemical reaction problems by
Stewart and Villadsen[39] to predict the oc-
currence of multiple steady states in catalyst
particles, Livbjerg et al.[29] and Villadsen[42]
to study the catalytic oxidation of SO,, Mc-
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. Gowin and Perlmutter[30,31] to study asymp-
totic stability as well as the plug flow models of
chemical reactors, and Ferguson and Finlayson
[18] to study the transient heat and mass transfer
in a catalyst pellet exhibiting multiple steady-
state solutions. McGowin and Perlmutter[30]
placed the collocation points arbitrarily and
obtained slower convergence than in the study
below.

We apply the orthogonal collocation method to
the plug flow model and compare results to those
from finite difference calculations. The orthogo-
nal collocation method proves to be faster and
more accurate than the finite difference method
used, by factors ranging from two to ten. The
validity of the plug flow model is verified by
comparing results to those from a velocity pro-
file model, and the possible prediction of the
heat transfer coefficient is considered.

2. PLUG FLOW MODEL-COMPARISON OF
COLLOCATION AND FINITE DIFFERENCE
METHODS

Consider the equations governing a fixed-bed
catalytic reactor under the assumptions of con-
stant physical properties and plug flow and for
a reaction governed by the conversion and
temperature.

dc_ 1a(ac
g arar(rar)+BR(c, T)
OT_ 1a(0
az_“rar(’ar +AR(c, T)

aclar=0T[or=0 atr=0 )]
oc _

o atr=1

T _ ppm
0,—%5-=Bi(T—T,)

c=0,T=1 atz=0.

The heat transfer resistance at the wall is charac-
terized by the Biot number, as used by Beek[4],
and is defined in terms of the effective thermal
conductivity and tube radius, whereas the
Nusselt number is defined in terms of the cata-

lyst particle diameter and fluid thermal conduc-
tivity. The effective thermal conductivity and
diffusivity are constant and contained in the para-
meters o' and a. The prediction of these para-
meters for use in design calculations is discussed
in review articles by Beek[4], Froment[23],
Paris and Stevens[34], and Hlavaéek[25] as
well as references listed below.

If radial dispersion is very rapid there are
no radial variations and the model reduces to the
lumped parameter model.

dec _
EE—BR(c,T)
2)
dar _ o ,
‘d—z— Nu'(T—-T,)+pB'R.

These ordinary differential equations can be
integrated numerically using standard subrou-
tines, and for this reason the lumped parameter
model is widely used. The two-dimensional
model (1), leading to partial differential equa-
tions, is more accurate, but requires additional
computation. The method outlined below offers
a rationale for deciding when the two-dimen-
sional model is necessary and provides a
means for reducing it to a set of ordinary differen-
tial equations, which are easily integrated using
the same methods as applied to Eq. (2).

Orthogonal collocation

The collocation method is one of a general
class of approximate methods known as the
Method of Weighted Residuals[14, 12, 1,21, 19],
which includes the better-known Galerkin,
integral, and moments methods as special cases.
The temperature and concentration are ex-
panded in a series %a;(z)P;(r) of known func-
tions of radius, P;, multiplied by unknown func-
tions of z, a;. The trial functions are substituted
into the differential equations (1), which are
satisfied at discrete radial collocation points, ;.
This gives a set of ordinary differential equations
governing a;(z). In the orthogonal collocation
method developed by Villadsen and Stewart
[44] the known expansion functions are ortho-

1082



Packed bed reactor analysis by orthogonal collocation

gonal polynomials, e.g.
N

T(r,z) =T(1,2)+ (1—r?) ¥ a;(z) Pi-,(r*) (3)
i=1

where the polynomials are defined by the relation
(for cylindrical geometry)

[, WGP () dr = Cooty

Jj=0,..,i—1 (4
where Py(r%) is a polynomial in r® of degree i;
for example, with w=1, P,=1, P,=1-—2r2,
P,=1—6r2+6r%. The weighting function
w(r?) = 1—r2 gives rise to one of the Jacobi
polynomials[13] whereas w(r?) =1 gives a
Legendre polynomial (which is also a Jacobi
polynomial), generalized to the cylindrical geom-
etry. Here we refer to the two sets of polynomials
as simply Jacobi (w = 1—r2) and Legendre (w =
1) polynomials. The collocation points are de-
noted by r; and are the roots to P, (r%) = 0.

Villadsen and Stewart[44] also point out that
the equations can be solved in terms of the solu-
tion at the collocation points instead of the
coefficients a,(z). This is more convenient and
reduces Eq. (1) to

dC N+1
d—zj-=a 2 BjiC;+BRj
i=1

J=1L..,N

N+1

dr,
=o' Y ByT:+B'R,
o ar ’ (5)

n+1

- g; Ani1iTi = Bi(Tyy — T,)

N+1

i_Zl Ay =0
C','(O) = 0, Tj(O) =1

where T; and c; are the temperature and conver-
sion at the collocation points, T,(z) = T(r;, 2),
ryv+1 = |. The matrices B and A represent the
Laplacian and first derivative and are easily

calculated with the algorithm described by
Villadsen and Stewart[44]. One needs only the
collocation points, which are readily available
[40]. The set of Egs. (5) is then integrated
numerically. It has been proved[20, 18] that the
solution to (5) converges to the solution to (1)
as N is increased.

First approximation

It is instructive to examine the first approxima-
tion (N = 1) in detail. Egs. (5) can be rearranged
to give

de,
dz =BR,
6)
dT, __ (6Bio’ _ ,
& (Bi+3)(T‘ Tu)+B'R,

where ¢, and T, are the conversion and tempera-
ture at the collocation point, r, =0-577. If
Legendre polynomials are used 6Bic’/(Bi+3)
is replaced by 8Bia'/(Bi+4) and r, =0-707.
Equation (6) is similar in form to the lumped

‘parameter model, Eq. (2), with the equivalent

heat transfer coefficient /

1 _1/1.1
N = 2a'(Bi+ 3)' )
Equation (6), however, refers to the temperature
at a particular radius, when it varies parabolically
with r, whereas Eq. (2) refers to a temperature

which is constant in r. In dimensional form
Eq. (7)is

1 _1 R .

U= hw+_3ke (Jacobi) &
1_1 R

U= hw+—4ke (Legendre). %)

For Legendre polynomials the T, is also the
average temperature, and the equivalence (9)
has been shown before for a parabolic tempera-
ture profile[5,35,26,3,22]. Equation (8) is
close to that predicted by Crider and Foss[15].
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In the first approximation the Jacobi polynomials
give T, > <T>, where <> denotes the radial
average, and Legendre polynomials give
T,= <T>. Hence with the Jacobi polynomials
the reaction rate expression is evaluated a tem-
perature above the average temperature, and
this approximates more closely the average rate
of reaction.

The relative importance of the wall resistance
is evident in Eq. (7). The ratio of 1/Bi to 1/Bi+
1/3 gives the fraction of the thermal resistance
occurring at the wall: e.g., Bi=1, 75 per cent;
Bi=20, 13 per cent. For small Biot numbers
most of the resistance occurs at the wall and only
a one-dimensional treatment is necessary. This
can be obtained from the orthogonal collocation
method using Eq. (5) with N = 1, or Eq. (6). As
the Biot number increases, and radial dispersion
becomes more important, the fulltwo-dimensional
treatment is necessary, Eq. (5),and N is increased
as Biincreases.

Numerical computations

Parameter values used were Bi= 1 or 20,
a=a' =1 =03, g'=02, T,=092 or I,
R = (1—c) exply—y/T], y =20. These values
lead to severe hot spots and represent extreme
cases. For more practical cases the computa-
tional difficulties are relaxed, and fewer terms
(N) and larger M = 1/Az are possible. The
reaction rate expression was programmed to be
zero when ¢ > 1, since such a case represents a
mathematical instability of no interest physically.
For Bi=1, T,=0-92 the radially-averaged
temperature is plotted as a function of reactor
length in Fig. 1. For this Biot number 75 per cent
of the heat transfer resistance is at the wall and
we expect the first approximation (N =1) to
give good results. The one-term Legendre solu-
tion predicts the peak average temperature
within 2 per cent, and the second and higher
approximations are identical on the scale of the
graph. As expected the Jacobi one-term solution
is a better first approximation.

The Egs. (5) were integrated using the
Runge-Kutta method and the Euler method. The
Euler method is less accurate for the same step

16 T T T

—— LEGENDRE, N=|
LEGENDRE, N=2,3,...
JACOBI, N=1 .

(M

Fig. 1. Average temperature, Bi = 1, T, = 0-92.

size but also faster since it evaluates the reaction
rate expression only once per step rather than
four times. The finite difference calculations
were made using a Crank-Nicholson implicit
method for the Laplacian operator and handled
the reaction rate expression explicitly. False
boundaries were used to insure the difference
approximation was second order in Ar. The
term N refers to the total number of radial grid
points at which the rate expression was evalu-
ated. For the finite difference solution this in-
cluded the center point (r=0) and the wall
(r = 1). Computation time increases linearly with
NM in both methods, since it is determined
primarily by the number of times the exponential
reaction rate is evaluated. The finite difference
results were extrapolated to zero Az keeping
Az/Ar? constant to establish the best finite differ-
ence estimate. Extrapolation to zero Az keeping
Ar? constant was less satisfactory since con-
vergence had not yet been attained even for
N = 11. For the collocation method, the results
for a given N were extrapolated to zero Az. For
the Runge-Kutta method the largest stable Az
usually gave good results and little change
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resulted as Az was decreased. Since convergence
in N was attained for the collocation method (to
the accuracy reported here) no extrapolation in
N was necessary.

The extrapolated collocation and finite
difference solutions agree very well: the values
of T(1,0-6) and <c> at z = 0-4 predicted by the
two methods are within 0-2 and 0-001 per cent,
respectively. Consider a set of finite difference
calculations as all those having different Ar, Az
but the same Az/Ar2 The set is included in Table
1 if the values of T(1, 0:6) and <c¢> at z=0-4
for that set could be extrapolated as Az — 0 to
give the exact answer within the tolerance
specified.

Table 1. Comparison of collocation and finite difference
methods for Bi = 1

Computing
time Absolute

Method N M Az/A# (sec) error

Predict T(1, 0-6) within 0-011, exact value = 1-1564

Legendre, Euler 3 200 — 0-45 0-01
Legendre, Euler 4 200 — 0-59 0-01
Legendre,

Runge-Kutta 3 200 — 1-5 001
Finite differencet 6 500 0-05 19 001
Legendre,

Runge-Kutta 4 200 — 2-1 001
Legendre, Euler 5 1000 —_ 3-0 0002
Legendre, Euler 6 1000 — 39  0-002
Finite difference 11 1000 0-10 64 0-008

Predict <c> at z = 0-4 within 1%; exact value = 0-17292

Legendre, Eulert 2 250 — 0-39 0-0017
Legendre,

Runge-Kutta 2 100 — 0-64 0-0014
Legendre,

Runge-Kutta 3 100 —_ 0-88 0-0011
Finite difference 6 400 0063 15 0-0015
Finite difference} 4 1000 0-009 25 0-0017

tWhen the inlet temperature is 300°C, an error in T of
0-01 represents an error of about 6°C.
iInterpolated values.

Listed in Table 1 is the member of the set
which has the smallest computation time, yet
gives an answer within the tolerance specified.
The collocation results are treated similarly,
with the set defined as all calculations with the

same N. This procedure prevents undue bias
against the finite difference results, which con-
verge slowly with Az, compared to the colloca-
tion method, so that if convergence in Az is
required (to some tolerance) large computation
times are necessary for the finite difference
results.

The results in Fig. 1 and Table | indicate that
the collocation method with N = 2 is sufficiently
accurate and that the collocation method is from
two to four times faster than a finite difference
method of equivalent accuracy. The computa-
tions times shown are for a CDC 6400 computer.

For Bi=20, T,,= 1-0 we expect more terms
are needed since the radial dispersion in the bed
is more important. Figure 2 shows the radially-
averaged temperature as a function of reactor
length. The solutions for N = 1 give poor results
so that designs based on a lumped parameter
model would be considerably in error. The
reason is illustrated in Fig. 3 which shows tem-
perature profiles in the bed. As the hot spot
is approached (z =0-5) the temperature rises
sharply in the center of the bed (r=0) and a
“thermal wave’ moves out towards the boun-
dary. The profile at z=0-5 is concave and is
poorly represented by a parabolic profile.

Shown in Fig. 3 are the values obtained with

15

S T T T T

LEGENDRE
O N=1|
O N=2 1
0O N=34,.

JACOBI

13 X N=| —~

(T)

“00 02 04 06 08 10

Fig. 2. Average temperature, Bi = 20, T,, = 1-0.
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T T

N\ ® COLLOCATION
o FINITE DIFFERENCE

Fig. 3. Temperature profiles, Bi = 20, for z =0-2, 0-4, 0-5,
0:6,0-7 corresponding to 1-5.

the collocation (N =35) and finite difference
(N = 11) methods and there is good agreement.
In the collocation method the solution is cal-
culated at the collocation points, which are
shown as black dots. The center (r = 0) is not a
collocation point so that the center temperature
is determined less accurately than the tempera-
tures at collocation points. To find the center
temperature we write Eq. (3) in an alternate form
and evaluate it at the collocation points,
N+1

Tj= 2 dirjzi~2,j= l,...,N+l. (lO)
i=1
The matrix Q; =r#"2 is inverted to find the
coefficients d;. The inverse is needed to calculate
the matrixes 4 and B in Eq. (5) and is calculated
only once for each N. The calculation of the
center temperature then involves a matrix
multiplication.
N+1

T(0,z)=d,= ;, [Q7'],T an
For z=0-5 the center temperature is 2 per cent
in error in the collocation method. The conver-

gence with N of the center temperature and
average conversion at z = 0-6 is shown in Fig. 4.
The phenomena illustrated there is true in
general: in the collocation method a radially-
averaged value converges with N very rapidly,
whereas the convergence is slower for the solu-
tion at the collocation points and still slower for
the center temperature. Results using Legendre
polynomials converge faster than those using
Jacobi polynomials. Keep in mind that the
properties shown in Fig. 4 are very sensitive
indicators of numerical error since the hot spot
is at z=0-6 and the average conversion rises
rapidly from 04 at z =105 to 09 at z=06.
Moving the hot spot very slightly in z would
cause large changes in T(0, 0-6) and <c>¢¢
even though the change could not be discerned
easily on a graph of these quantities versus z.
Comparison of collocation and finite difference
calculations in Table 2 indicates that if one wants
to calculate the average conversion at z =06

1.8 T T T T
16—
T(0,06)
14—
o LEGENDRE
o JACOBI
12 X FINITE DIFFERENCE -
ogol-
oss|-
(c)
080}
075

Fig. 4. Convergence of solutions with N. The arrow marks
the finite difference result for N = 11.
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Table 2. Comparison of collocation and finite difference
methods for Bi = 20

Computing
time Absolute
(sec) error

Method N M Az/Ar

Predict <¢> at z = 0-6 within 1%, exact value = 0-919

Legendret 5 250 — 34 0-001
Finite difference 11 10600 0-10 6:5 0-010
Legendret 6 500 — 83 0

Finite difference 11 2000 0-05 130 0-005

Predict <¢> at z = 0-6 within 3%, exact value = 0-919

Legendret 3 200 — 1-6 0:020
Legendret 4 200 — 2-1 0-015
Finite difference 4 1000 0-009 2:4 002
Finite difference 6 1000 0025 34 0-02

tRunge-Kutta integration.

within | per cent, a collocation solution can be
twice as fast and ten times as accurate or four
times as fast and five times as accurate as a
finite difference solution. If the tolerance is
increased to 3 per cent the difference is not so
marked: about 14 times as fast for the same ac-
curacy. The integration in the z direction can be
done using collocation as well[43], and this
precedure is reported to be faster than the
Runge-Kutta method used here [42].

Based on these comparisons it is clear that
the orthogonal collocation method can give
accurate answers to the mathematical model of a
packed bed reactor, the method is an efficient
numerical scheme, and converges rapidly. The
number of terms needed in this application
(which is a severe test) ranged from N =2 for
Bi= 1to N = §for Bi =20. Itis clear from these
calculations that McGreavy and Turner[32]
obtained good agreement in their attempt to
reduce the two-dimensional case (1) to a lumped
parameter model primarily because they did
calculations for a Biot number (their Nusselt
number) of 2.

3. VELOCITY PROFILE MODEL
In a packed bed the velocity profile is flat near
the center, rises to a peak near the wall and
falls rapidly right at the wall[33,38,16,9.36].

This velocity profile introduces a radial variation
in effective thermal conductivity and diffusivity
(8,11,37,10,28,36,17,16]. A model including
these complications was used to assess their
influence on the heat transfer and conversion
predictions. Valstar[41] made computations
using a velocity profile for a vinyl acetate reactor
and found the radial variation important.

Several sources[37,28,36] suggest that the
effective thermal conductivity at any radial
position varies linearly with the local Reynolds
number. The local Reynolds number, or velocity
profile, is difficult to predict, however, especially
in nonisothermal situations. Schertz and Bischoff
[36] suggest a correlation based on the void
fraction and viscosity, but their data were
taken under conditions where the flow was
probably laminar in the center of the tube and
turbulent near the wall. Instead we use here the
experimental data of Schwartz and Smith[38]
taken under isothermal conditions, and assume
the velocity profile would remain similar in the
nonisothermal case. The velocity profiles, tabu-
lated in Table 3, are for a 4-in. dia. tube packed
with $-in. dia. spheres (d,/d, = 0-039). Somewhat
similar profiles were obtained experimentally
for Reynolds numbers between 130 and 290[38].

Table 3. Velocity and effective thermal
conductivity profiles

r G(I<G>  k.(r)|<k.>
0-184 0-942 0-957
0-412 0-942 0-957
0-617 0-980 0-985
0-787 1-112 1-083
0911 1-076 1-056
0-983 0-768 0-291
1-000 0-000 0-230

The profile is used here for Re = 190 in areactor
80 in. long. The radial Peclet number for mass
transfer is between 8 and 10[7,17, 16, 36], and
we use 10 here. The data of Schertz and Bischoff
[36] suggest that the Peclet number for mass is
constant even though the velocity is a function of
radius. We use this relation, so that the diffusivity
varies linearly with velocity.
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= G(rdy _

Pe, = oD, (r) 10. (12)
The effective thermal conductivity follows a
relation of the form k, = k.°+ b Re. The constant
k.’ represents the static bed effective thermal
conductivity and can be calculated using the
methods of Yagi and Kunii[45], Kunii and Smith
[27]1, or Baddour and Yoon[2]. The latter authors
use a different method to calculate &, within one-
half particle diameter of the wall and they give
experimental verification as well. The k, at this
position is smaller and accounts for added
resistance to heat transfer at the wall. Thus it is
not necessary to use a heat transfer coefficient
to account for the same resistance. Baddour
and Yoon’s methods were used to obtain the
following relations

kelk;=8:14+0-09 Re Pr (13)

kelk; = 6'9+0-01 Re Pr, within3dp of wall  (14)
and these were used with the local Reynolds
number, G (r)dy/n. The resulting thermal con-
ductivity distribution is shown in Table 3.
Physical properties were used for air at 300°C
and assumed constant, although their variation
with temperature could be easily included. The
governing equations are a generalization of
Eq. (1).

G(r)g—§= aGVc+aVGVc+BR

G (NI = kv T+a'VAVT+ER  (15)

T=T,dclor=0 atr=1.

The collocation version of the same equations is

dc N+1 a N+1
ZEf==(1 :E:liﬁ(2'+2§;<:2 14ﬁCh)
i=1 i=1

x N+1 R
(2 Ajici) +35"f
i=1 !

N+1

dT k o (N
il SRR R =
dZ a Gj 1::2] BﬁTi+Gj(i=2] Aﬁki)

(16)
i

N+1 Rj

x (2 AiiTi) +B’6
i=1

ji=1,...,N

N+1
Tyey =Ty E Ayi1,i€i=0

i=1

TJ(O) = 1‘0, CJ(O) = 0.

Typical temperature and concentration pro-
files are shown for this model by the solid lines
in Figs. 5 and 6. In the velocity profile model no
heat transfer coefficient is needed at the wall
since the increased resistance is accounted for

1.5

——— VELOCITY PROFILE
— — PLUG FLOW
X Bi=I5
14— /0\ e Bi=72 —
'x-
1/
13—
I
(m |
'I
12—
I
|
L= /)
v
10 ] ] I ]
00 02 04 0s o8 10

Fig. 5. Comparison of average temperature for velocity
profile and plug flow models.

by the lower effective thermal conductivity
given by Eq. (14). During the computations a
Biot number was calculated.

_ k1)3T/r|,-,

Bi=—r+"7,

a7

where T* is the average temperature within
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O8I~ | —— VELoaITY PROFILE

—— PLUG FLOW, Bi=1IS

clr,z)

00 02 04 06 os 10

Fig. 6. Comparison of conversion profiles for velocity profile
and plug flow models. z=0-20, 0-25, 0-30 corresponds to
1-3.

one-half particle diameter of the wall. This is
the distance over which the void fraction varies
from 0-4 to 1-0 at the wall[6]. The predicted
Biot number was 15 and varied only a few per
cent down the bed. Bi = 15 was then used in the
plug flow model, and the results are compared in
Figs. 5 and 6. Pointwise comparisons are not to
be expected since the two models are obviously
different. Even so the comparisons are quite
good. To test the sensitivity an additional cal-
culation was made using Bi=7-2 in the plug
flow model, and the results do not compare
nearly as well. The three correlations available
[24, 47, 46] for Nusselt number of beds packed
with spheres with small d,/d, give Biot numbers
of 9-4, 8-2 and 6-6 respectively. Agreement with
these correlations, based on experimental results,
- is not necessarily expected since the experiments
are for a velocity profile in a nonisothermal
situation whereas the calculations use a velocity
profile from an isothermal case. The results do
indicate that the velocity profile model can be
used to predict the heat transfer coefficient
needed in the plug flow model. Further work is
needed to predict the velocity profile and com-
pare to experimental correlations. These results

can be contrasted to those of Valstar[41], who
used a relation of the form (13) plus a heat
transfer coefficient. Thus the resistance at the
wall was accounted for in two ways, and the
plug flow and velocity profile model did not agree
as well as in the case studied here.

4. CONCLUSIONS

The orthogonal collocation method is an
efficient numerical method for solving the equa-
tions governing packed bed reactors with radial
gradients. The number of terms needed in the
expansion increases with increasing Biot num-
ber. The velocity profile model predicts a Biot
number which can be used in the plug flow model
to give similar temperature and conversion
predictions.
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NOTATION

a; coefficientin Eq. (3)
Ay matrix representing d/dr

Bi Biot number, k,, R/k,

Bj; matrix representing V2

¢ conversion

¢, heat capacity per unit mass
normalization constant in Eq. (4)
d, particle diameter

d; coefficient in Eq. (10)

d, tube diameter
. effective diffusivity

E activation energy
G mass flow rate based on area of empty
reactor

h,, heat transfer coefficient
heat of reaction

k effective thermal conductivity, normal-

ized with respect to <k,>

k. effective thermal conductivity
k" static bed effective thermal conductivity

ks fluid thermal conductivity

ko, reaction rate

L length of reactor

M 1/Az
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P,
Pe',
Pe,,

Pr
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T,

T,
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number of interior collocation points; for
finite difference results 1+ 1/Ar
Nusselt number, k,, d,/;

2UL/Gc,R=S12L|R z length
polynomial of degree i in r?
Peclet number for heat transfer, ¢,Gd,/k, Greek symbols
Peclet number for mass transfer, a Ld,/R?*Pe,
Gd,lpD, a' Ld,/R*Pe,
Prandtl number, C, u/k, B Damkghler Group 1. k,L/G
r2-2 B’ Damkohler Group III,
radius (¢,GTy)
radius of reactor v EIRT,
Reynolds number, Gd,/u & Kronecker delta
gas constant p density
Stanton number, U/Gc, L viscosity
temperature (dimensionless)
reference temperature, taken as inlet Subscripts
temperature j value at collocation point
external wall temperature o reference value
average temperature with $d, of wall <> radial average,2 [,' () rdr
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Résumé — Les équations gouvernant un réacteur a couche garnie. avec des degrés de température et
de concentration radiaux, sont résolues par la méthode de collocation orthogonale. 11 est démontré
que cette méthode est plus rapide et plus précise que des calculs de différence limitée. Avec la méthode
de collocation orthogonale, il est aisé d’étendre les modéles unidimensionnels (paramétre groupé)
aux modeles bidimensionnels nécessaires quand les degrés de concentration et de la température sont
importants.

Le modéele bidimensionnel est nécessaire pour des nombres de Biot élevés, h,,R/k,., dans lequel
hy, est le coefficient de transfert de chaleur a la paroi, R le rayon du tube et , la conductivité thermique
effective. Pour des nombres de Biot inférieurs a 1, 75 pour cent de la résistance au transfert de chaleur
se situe a la paroi et le procédé unidimensionnel (paramétre groupé) donne de bons résultats.

Les calculs sont illustrés a la fois pour la vélocité d’'un courant tampon et & variation radiale. Dans
ce dernier cas, les courbes de diffusivité et de conductivité thermique effectives sont induits par la
courbe de vélocité. Les calculs utilisant la courbe de vélocité prédisent un coefficient de transfert de
chaleur qui sert aux modéles a écoulement tampon. Un accord satisfaisant est obtenu entre ces
modéles.

Zusammenfassung— Die Gleichungen, die einen Fiillkérperreaktor mit radialen Temperatur- und
Konzentrationsgradienten regeln werden unter Verwendung der orthogonalen Zusammenstellungs-
methode gelost. Est wird gezeigt, dass diese Methode schneller und genauer ist als die endlichen
Differenzberechnungen. Bei Verwendung der orthogonalen Zusammenstellungsmethode ist es ohne
weiteres moglich eindimensionale (zusammengefasste Parameter) Modelle auf die zweideimensionalen
Modelle zu erweitern, die erforderlich sind wenn radiale Temperatur und Konzentrationsgradienten
eine Rolle spielen.

Das zweidimensionale Modell ist notwendig fiir grosse Biot Zahlen, h,,R/k., worin h,. der Wir-
meiibertragungskoeffizient der Wand ist, R der Rohrradius, und &, effektive Wirmeleitfahigkeit. Fiir
Biot Zahlen von unterhalb eins, befinden sich fiinfundsiebzig Prozent des Widerstands gegen Wir-
meiibertragung an der Wand, und eine eindimensionale (zusammengefasster Parameter) Behandlung
gibt gute Resultate.

Es werden Berechnungen fiir Pfropfstromung soweie fiir radial variierende Geschwindigkeit
angefiihrt. Im letzteren Falle verursacht das Geschwindigkeitsprofil effektive Wirmeleitfahigkeits-
und Diffusionsvermogensprofile. Die unter Verwendung des Geschwindigkeitsprofils ausgefiihrten
Berechnungen sagen einen Wirmeiibertragungskoeffizienten voraus, der in dem Pfropfstromungs-
modell verwendet wird. Es wird gute Ubereinstimmung unter den Modellen erhalten.
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